PCA based image denoising

نویسندگان

  • Murali Mohan Babu
  • Giri Prasad
چکیده

Principal component analysis (PCA) is an orthogonal transformation that seeks the directions of maximum variance in the data and is commonly used to reduce the dimensionality of the data. In image denoising, a compromise has to be found between noise reduction and preserving significant image details. PCA is a statistical technique for simplifying a dataset by reducing datasets to lower dimensions. It is a standard technique commonly used for data reduction in statistical pattern recognition and signal processing. This paper proposes a denoising technique by using a new statistical approach, principal component analysis with local pixel grouping (LPG). This procedure is iterated second time to further improve the denoising performance, and the noise level is adaptively adjusted in the second stage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Image Denoising Methods Based on Wavelet Transform and Threshold Functions

There are many unavoidable noise interferences in image acquisition and transmission. To make it better for subsequent processing, the noise in the image should be removed in advance. There are many kinds of image noises, mainly including salt and pepper noise and Gaussian noise. This paper focuses on the research of the Gaussian noise removal. It introduces many wavelet threshold denoising alg...

متن کامل

Statistical Wavelet-based Image Denoising using Scale Mixture of Normal Distributions with Adaptive Parameter Estimation

Removing noise from images is a challenging problem in digital image processing. This paper presents an image denoising method based on a maximum a posteriori (MAP) density function estimator, which is implemented in the wavelet domain because of its energy compaction property. The performance of the MAP estimator depends on the proposed model for noise-free wavelet coefficients. Thus in the wa...

متن کامل

Image denoising with patch based PCA: local versus global

In recent years, overcomplete dictionaries combined with sparse learning techniques became extremely popular in computer vision. While their usefulness is undeniable, the improvement they provide in specific tasks of computer vision is still poorly understood. The aim of the present work is to demonstrate that for the task of image denoising, nearly state-of-the-art results can be achieved usin...

متن کامل

Two-stage image denoising by principal component analysis with local pixel grouping

This paper presents an efficient image denoising scheme by using principal component analysis (PCA) with local pixel grouping (LPG). For a better preservation of image local structures, a pixel and its nearest neighbors are modeled as a vector variable, whose training samples are selected from the local window by using block matching based LPG. Such an LPG procedure guarantees that only the sam...

متن کامل

Image Denoising Using Anisotropic Diffusion Equations on Reflection and illumination Components of Image

This paper proposes a new hybrid method based on Homomorphic filtering and anisotropicdiffusion equations for image denoising. In this method, the Homomorphic filtering extracts the reflectionand illumination components of a noisy image. Then a suitable image denoising method based onanisotropic diffusion is applied to each components with its special user-defined parameters .This hybridscheme ...

متن کامل

Adaptive Tensor-Based Principal Component Analysis for Low-Dose CT Image Denoising

Computed tomography (CT) has a revolutionized diagnostic radiology but involves large radiation doses that directly impact image quality. In this paper, we propose adaptive tensor-based principal component analysis (AT-PCA) algorithm for low-dose CT image denoising. Pixels in the image are presented by their nearby neighbors, and are modeled as a patch. Adaptive searching windows are calculated...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012